Натрий

Загрузка ...
Натрий

11
Na 1 8 2
НАТРИЙ
22,990
3s1

3 января 1959 г. в небе появилась комета. Не обычная комета – искусственная: из летящей к Луне советской космической ракеты было выпущено облако паров натрия. Яркое свечение натриевой кометы позволило уточнить траекторию первого летательного аппарата, прошедшего по маршруту Земля – Луна.

 

 

Натрий и наши предки

По распространенности на нашей планете натрий занимает шестое место среди всех элементов. Природные соединения натрия – это полевые шпаты и каменная соль, криолит и селитра, мирабилит и бура, нефелин и ультрамарин.

И не удивительно, что с соединениями натрия наши предки познакомились очень давно. Питекантропу хлористый натрий был так же необходим, как и современному человеку.

В Ветхом завете упоминается некое вещество «нетер». Это вещество употреблялось, по современной терминологии, как моющее средство. Скорее всего нетер – это просто сода, углекислый натрий, который образовывался в соленых египетских озерах с известковыми берегами. Об этом же веществе, но под названием «нитрон» писали позже греческие авторы Аристотель, Диоскорид, а древнеримский историк Плиний Старший, упоминая это же вещество, называл его уже «нитрум». (Как это часто бывает, в конце концов возникла путаница, и в XVI в. термином «нитрум» обозначали селитру – азотнокислый натрий.)

У арабских алхимиков вместо «нитрум» употреблялся термин «натрон». От «натрона» и произошло современное название «натрий».

В XVIII в. химикам было известно уже очень много различных соединений натрия. Соли натрия широко применялись в медицине, при выделке кож, при крашении тканей. И хотя о соединениях натрия знали очень много, сам элемент вплоть до XIX в. открыт не был. Слишком активен этот металл, чтобы его можно было выделить традиционными химическими методами.

Из щелочи...

19 ноября 1807 г. в Лондоне на заседании Королевского общества сэр Хэмфри Дэви объявил об открытии им новых элементов – натрия и калия. Выделить эти элементы удалось с помощью электрического тока. Единственным реально применимым источником электричества в то время был вольтов столб. Вольтов столб, которым пользовался Дэви, состоял из 250 пар медных и цинковых пластин. Д.И. Менделеев так описывает открытие Дэви:

«Соединяя с положительным (от меди или угля) полюсом кусок влажного (чтобы достичь гальванопроводности) едкого натра и выдолбив в нем углубление, в которое налита была ртуть, соединенная с отрицательным полюсом (катодом) сильного вольтова столба, Дэви заметил, что в ртути растворяется, при пропускании тока, особый металл, менее летучий, чем ртуть, и способный разлагать воду, вновь образуя едкий натр».

Дэви первым изучил свойства натрия и калия, он отметил легкую окисляемость щелочных металлов, указал, что пары натрия воспламеняются на воздухе.

Выделение щелочных металлов было, конечно, выдающимся открытием в химии, но технике того времени оно не дало ровным счетом ничего. Более того, никто не знал, какую вообще пользу могут принести мягкие и очень активные металлы, воспламеняющиеся под действием воды.

Через год после открытия Дэви Жозеф Гей-Люссак и Луи Тенар получили натрий не электролизом, а при помощи реакции едкого натра с железом, нагретым до красного каления. Но и это открытие не изменило положения натрия как элемента «только для химиков», элемента без применений; и так продолжалось почти 17 лет. Но в 1824 г. с помощью натрия был выделен алюминий (из хлористого алюминия), и интерес к натрию сразу возрос. Вскоре, однако, для восстановления алюминия стали применять калий, и производство натрия опять пошло на убыль. Лишь через 32 года А. Сент-Клер Девиль и Р. Бунзен доказали, что в производстве алюминия все-таки лучше пользоваться натрием, а не калием. Сент-Клер Девиль разработал первый промышленный способ получения алюминия, для которого натрий был необходим. Пришлось попутно разработать и промышленный способ получения элемента №11.

По методу Сент-Клер Девиля натрий получили, восстанавливая соду углем в присутствии известняка.

В 1886 г. этот способ был усовершенствован, но в том же году натрий снова остался не у дел: спустя буквально несколько месяцев американец Холл и француз Эру почти одновременно разработали электролитический способ получения алюминия.

Для того чтобы элемент №11 вновь вернулся в промышленные сферы, нужны были по меньшей мере две вещи: новые производства, которые не могли бы обойтись без натрия, и эффективные методы получения дешевого натрия.

Взаимное влияние

В 1890 г. был разработан электролитический способ получения элемента №11. По существу, это был перенос в промышленность опыта 80-тилетней давности – опыта Дэви. Электролизу подвергали расплав едкого натра, только источники энергии были уже иные – более совершенные, чем вольтов столб.

Спустя 34 года американский инженер Г. Даунс принципиально изменил процесс электролитического получения натрия, заменив щелочь гораздо более дешевой поваренной солью. В это время электроэнергия становилась все доступнее и дешевле. Дальше – больше. Все это, конечно, не могло не сказаться на стоимости элемента №11. Если в 1890 г. килограмм натрия стоил 4,5 доллара, то в 1953 г. – всего лишь 35 центов.

О масштабах мирового производства элемента №11 можно судить по таким цифрам: 1913 г. – 6 тыс. т., 1952 г. (без СССР) - 140 тыс. т., 1966 г. (тоже без СССР) – более 180 тыс. т натрия.

На что же расходуются эти тысячи и сотни тысяч тонн? Прежде всего на производство некоторых соединений элемента №11 – ведь далеко не все они есть в природе. Каменная соль (или галит) NaCl, чилийская селитра NaNO3, криолит Na3AlF6, глауберова соль Na2· 10H2O, бура Na2B4O· 10Н2О и некоторые силикаты – вот основные природные соединения натрия. А такие важные натриевые соли, как, например, соду или гипосульфит, приходится получать искусственно. К счастью, производства этих веществ обходятся без металлического натрия. Зато цианид натрия, применяемый в электрохимии и при добыче цветных металлов, выгоднее всего получать, используя в качестве сырья сам элемент №11.

Или другой пример. Производное аммиака – амид натрия NaNH2 – получают в реакции жидкого NH3 с металлическим натрием. Это вещество нестойко, оно бурно реагирует с водой, и вообще, работая с ним, нужно соблюдать не меньше осторожности, чем при работе с металлическим натрием. Амид натрия нужен для получения двух очень важных для нас веществ – синтетического индиго и витамина А. Следовательно, для получения и красителя, и витамина нужен натрий.

В 1928 г. группа ленинградских химиков во главе с профессором С.В. Лебедевым синтезировала первый в мире синтетический каучук, который назвали натрий-бутадиеновым. «Бутадиеновым» – потому, что этот СК – продукт полимеризации бутадиена-1,3, а «натрий» – оттого, что именно элементарный натрий служил катализатором процесса полимеризации.

Исходными веществами в производстве синтетических моющих средств чаще всего бывают высшие спирты (т.е. спирты, молекулы которых содержат длинные цепочки атомов углерода). Эти спирты получают восстановлением соответствующих кислот, а лучший восстановитель в этих реакциях – все тот же натрий...

Многим, вероятно, покажется странным утверждение, что элемент №11 нужен транспорту. Тем не менее это так. В производстве тетраэтилсвинца – пока еще самого распространенного антидетонатора моторных топлив – в качестве сырья используют сплав свинца с натрием (в соотношении 9:1). Другой сплав на основе свинца, в составе которого 0,58% натрия, необходим железнодорожному транспорту. Из этого сплава делают подшипники осей железнодорожных вагонов.

Металлический натрий – и твердый и жидкий – очень хорошо проводит и передает тепло. На этом основано его применение в качестве теплоносителя. Такую роль натрий выполняет в довольно многих химических производствах (когда нужен равномерный обогрев с температурой 450...650°C), в машинах для литья под давлением, в клапанах авиационных двигателей, в атомных реакторах. Для атомной техники важно также, что натрий почти не захватывает тепловые нейтроны и не влияет на ход цепной ядерной реакции.

Нельзя забывать еще об одном важном применении натрия. Как один из самых активных восстановителей, элемент №11 используют для получения некоторых редких металлов, например циркония.

Стоит ли после всего этого удивляться не прекращающемуся росту производства натрия?

Заканчиваем наш рассказ об элементе №11 словами Дмитрия Ивановича Менделеева, написанными много лет назад, но вдвойне справедливыми для наших дней: «Получение металлического натрия относится к важнейшим открытиям в химии не потому одному, что через то расширилось и стало более правильным понятие о простых телах, но потому особенно, что в натрии видны химические свойства, лишь слабо выраженные в других общеизвестных металлах».

Подробный рассказ о химических свойствах натрия опущен по той причине, что это один из немногих разделов химии, которые достаточно полно излагаются в школьных учебниках.

Натрий на подводной лодке

Натрий плавится при 98°, а кипит только при 883°C. Следовательно, температурный интервал жидкого состояния этого элемента достаточно велик. Именно поэтому (и еще благодаря малому сечению захвата нейтронов) натрии стали использовать в ядерной энергетике как теплоноситель. В частности, американские атомные подводные лодки оснащены энергоустановками с натриевыми контурами. Тепло, выделяющееся в реакторе, нагревает жидкий натрий, который циркулирует между реактором и парогенератором. В парогенераторе натрий, охлаждаясь, испаряет воду, и полученный пар высокого давления вращает паровую турбину. Для тех же целей используют сплав натрия с калием.

Неорганический фотосинтез

Обычно при окислении натрия образуется окись состава Na2О. Однако если сжигать натрий в сухом воздухе при повышенной температуре, то вместо окиси образуется перекись N2О2. Это вещество легко отдает своя «лишний» атом кислорода и обладает поэтому сильными окислительными свойствами. Одно время перекись натрия широко применяли для отбелки соломенных шляп. Сейчас удельный вес соломенных шляп в использовании перекиси натрия ничтожен; основные количества ее используют для отбелки бумаги и для регенерации воздуха на подводных лодках. При взаимодействии перекиси натрия с углекислым газом протекает процесс, обратный дыханию: 2Na2О2 + 2СО2 → 2Na23 + О2, т.е. углекислый газ связывается, а кислород выделяется. Совсем как в зеленом листе!

Натрий и золото

К тому времени, как был открыт натрий, алхимия была уже не в чести, и мысль превращать натрий в золото не будоражила умы естествоиспытателей. Однако сейчас ради получения золота расходуется очень много натрия. «Руду золотую» обрабатывают раствором цианистого натрия (а его получают из элементарного натрия). При этом золото превращается в растворимое комплексное соединение, из которого его выделяют с помощью цинка. Золотодобытчики – среди основных потребителей элемента №11. В промышленных масштабах цианистый натрий получают при взаимодействии натрия, аммиака и кокса при температуре около 800°C.

Натриевые провода

Электропроводность натрия в три раза ниже, чем электропроводность меди. Но натрий в 9 раз легче! Выходит, что натриевые провода выгоднее медных. Конечно, тонкие провода из натрия не делают, но вот шины для больших токов целесообразно изготовлять именно из натрия. Эти шины представляют собой заваренные с торцов стальные трубы, внутри заполненные натрием. Такие шины дешевле медных.

Натрий в воде

Каждый школьник знает, что произойдет, если бросить кусочек натрия в воду. Точнее, не в воду, а на воду, потому что натрий легче воды. Тепла, которое выделяется при реакции натрия с водой, достаточно, чтобы расплавить натрий. И вот бегает по воде натриевый шарик, подгоняемый выделяющимся водородом. Однако реакция натрия с водой – не только опасная забава; напротив она часто бывает полезной. Натрием надежно очищают от следов воды трансформаторные масла, спирты, эфиры и другие органические вещества, а с помощью амальгамы натрия (т.е. сплава натрия с ртутью) можно быстро определить содержание влаги во многих соединениях. Амальгама реагирует с водой намного спокойнее, чем сам натрий. Для определения влажности к пробе органического вещества добавляют определенное количество амальгамы натрия и по объему выделившегося водорода судят о содержании влаги.

Натриевый пояс земли

Вполне естественно, что на Земле натрий никогда не встречается в свободном состоянии – слишком активен этот металл. Но в верхних слоях атмосферы – на высоте около 80 км – обнаружен слой атомарного натрия. На такой высоте практически нет кислорода, паров воды и вообще ничего, с чем натрий мог бы вступить в реакцию. Спектральными методами натрий был обнаружен и в межзвездном пространстве.

Изотопы натрия

Природный натрий состоит только из одного изотопа с массовым числом 23. Известны шесть радиоактивных изотопов этого элемента, причем два из них представляют значительный интерес для науки. Натрий-22, распадаясь, излучает позитроны – положительно заряженные частицы, масса которых равна массе электронов. Этот изотоп с периодом полураспада 2,58 года используют в качестве позитронного источника. А изотоп натрий-24 (его период полураспада около 15 часов) применяют в медицине для диагностики и для лечения некоторых форм лейкемии – тяжелого заболевания крови.

Как получают натрий

Современный электролизер для получения натрия – довольно внушительное сооружение, внешне напоминающее печь. Эта «печка» сложена из огнеупорного кирпича и снаружи окружена стальным кожухом. Снизу через дно электролизера введен графитовый анод, окруженный кольцеобразной сеткой – диафрагмой. Эта сетка не дает возможности натрию проникнуть в анодное пространство, где выделяется хлор. Иначе натрий сгорел бы в хлоре. Анод, кстати, тоже кольцеобразный, Он сделан из стали. Обязательная принадлежность электролизера – два колпака. Один устанавливают над анодом для сбора хлора, другой – над катодом для отвода натрия.

В электролизере загружают смесь тщательно высушенных хлористого натрия и хлористого кальция. Такая смесь плавится при более низкой температуре, чем чистый хлористый натрий. Обычно электролиз ведут при температуре около 600°C.

На электроды подают постоянный ток напряжением около 6в; на катоде происходит разряд ионов Na+ и выделение металлического натрия. Натрий всплывает и отводится в специальный сборник (разумеется, без доступа воздуха). На аноде разряжаются попы хлора Сl и выделяется газообразный хлор – ценный побочный продукт нутриевого производства.

Обычно электролизер работает под нагрузкой 25...30 тыс. а, при этом в сутки производится 400...500 кг натрия и 600...700 кг хлора.

«Самый металлический металл»

Так иногда называют натрий. Это не совсем справедливо: в менделеевской таблице нарастание металлических свойств происходит по мере продвижения справа налево и сверху вниз. Так что у аналогов натрия по группе – франция, рубидия, цезия, калия – металлические свойства выражены сильнее, чем у натрия. (Конечно, имеются в виду только химические свойства.) Но и у натрия есть полный комплекс «металлических» химических свойств. Он легко отдает свои валентные электроны (по одному на атом), всегда проявляет валентность 1+, обладает ярко выраженными восстановительными свойствами. Гидроокиси «типичных металлов» должны быть основаниями. Гидроокись натрия NaOH – сильная щелочь. Все это объясняется строением атома натрия, на внешней оболочке которого только один электрон, и с ним атом легко расстается.

В кислороде, фторе и хлоре натрий горит с серой, реагирует уже при растирании в ступке, серную кислоту восстанавливает до серы или даже до сульфида, а «сухой лед» (твердая углекислота) при контакте с натрием взрывается, (поэтому углекислотно-снежные огнетушители ни в коем случае нельзя применять для тушения горящего натрия). Не взаимодействует натрий только с азотом и с инертными газами.

Физические свойства натрия – тоже свойства типичного металла. Он весьма пластичен, даже мягок (легко режется ножом), свежий грез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки.